首页> 外文OA文献 >UV capabilities to probe the formation of planetary systems: From the ISM to planets
【2h】

UV capabilities to probe the formation of planetary systems: From the ISM to planets

机译:紫外线探测行星系统形成的能力:从ISM到行星

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Planetary systems are angular momentum reservoirs generated during star formation. Solutions to three of the most important problems in contemporary astrophysics are needed to understand the entire process of planetary system formation: The physics of the ISM. Stars form from dense molecular clouds that contain similar to 30% of the total interstellar medium (ISM) mass. The structure, properties and lifetimes of molecular clouds are determined by the overall dynamics and evolution of a very complex system - the ISM. Understanding the physics of the ISM is of prime importance not only for Galactic but also for extragalactic and cosmological studies. Most of the ISM volume (similar to 65%) is filled with diffuse gas at temperatures between 3000 and 300 000 K, representing about 50% of the ISM mass. The physics of accretion and outflow. Powerful outflows are known to regulate angular momentum transport during star formation, the so-called accretion-outflow engine. Elementary physical considerations show that, to be efficient, the acceleration region for the outflows must be located close to the star (within 1 AU) where the gravitational field is strong. According to recent numerical simulations, this is also the region where terrestrial planets could form after 1 Myr. One should keep in mind that today the only evidence for life in the Universe comes from a planet located in this inner disk region (at 1 AU) from its parent star. The temperature of the accretion-outflow engine is between 3000 and 10(7) K. After 1 Myr, during the classical T Tauri stage, extinction is small and the engine becomes naked and can be observed at ultraviolet wavelengths. The physics of planet formation. Observations of volatiles released by dust, planetesimals and comets provide an extremely powerful tool for determining the relative abundances of the vaporizing species and for studying the photochemical and physical processes acting in the inner parts of young planetary systems. This region is illuminated by the strong UV radiation field produced by the star and the accretion-outflow engine. Absorption spectroscopy provides the most sensitive tool for determining the properties of the circumstellar gas as well as the characteristics of the atmospheres of the inner planets transiting the stellar disk. UV radiation also pumps the electronic transitions of the most abundant molecules (H-2, CO, etc.) that are observed in the UV. Here we argue that access to the UV spectral range is essential for making progress in this field, since the resonance lines of the most abundant atoms and ions at temperatures between 3000 and 300 000 K, together with the electronic transitions of the most abundant molecules (H-2, CO, OH, CS, S-2, CO2+, C-2, O-2, O-3, etc.) are at UV wavelengths. A powerful UV-optical instrument would provide an efficient mean for measuring the abundance of ozone in the atmosphere of the thousands of transiting planets expected to be detected by the next space missions (GAIA, Corot, Kepler, etc.). Thus, a follow-up UV mission would be optimal for identifying Earth-like candidates.
机译:行星系统是恒星形成期间产生的角动量储层。要了解行星系统形成的整个过程,需要解决当代天体物理学中三个最重要问题的解决方案:ISM的物理学。恒星由密集的分子云形成,这些分子云占星际介质(ISM)总质量的30%左右。分子云的结构,性质和寿命取决于非常复杂的系统ISM的整体动力学和演化。不仅对银河系而且对银河系外和宇宙学研究而言,了解ISM的物理学也至关重要。大部分ISM体积(约占65%)在3000至300 000 K之间的温度下充满弥散气体,约占ISM质量的50%。吸积和流出的物理现象。众所周知,强大的出流可调节恒星形成过程中的角动量传输,即所谓的积积-流出引擎。基本的物理考虑表明,要有效,流出的加速区域必须位于重力场强的恒星附近(1 AU以内)。根据最近的数值模拟,这也是1 Myr之后可能形成地球的区域。应该记住的是,今天,宇宙中唯一存在生命的证据来自一颗位于其内盘区(距其母星1 AU)的行星。吸积流出发动机的温度在3000到10(7)K之间。1Myr之后,在经典的T Tauri阶段,消光很小,发动机变得裸露,可以在紫外波长下观察到。行星形成的物理学。对尘埃,小行星和彗星释放的挥发物的观察为确定汽化物种的相对丰度以及研究作用在年轻行星系统内部的光化学和物理过程提供了极为强大的工具。该区域由恒星和吸积物流出引擎产生的强烈的紫外线辐射场照亮。吸收光谱法提供了最灵敏的工具,用于确定星际气体的特性以及通过恒星盘的内行星大气的特性。紫外线辐射还会泵浦紫外线中观察到的最丰富的分子(H-2,CO等)的电子跃迁。在这里,我们认为进入紫外线光谱范围对于在该领域取得进展至关重要,因为最丰富的原子和离子在3000至300 000 K的温度下的共振线以及最丰富的分子的电子跃迁( H-2,CO,OH,CS,S-2,CO2 +,C-2,O-2,O-3等)处于UV波长。强大的紫外线光学仪器将为测量下一个太空任务(GAIA,Corot,Kepler等)预计将要检测到的数千个过境行星的大气中的臭氧含量提供有效的手段。因此,后续的紫外线任务对于确定类似地球的候选物将是最佳的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号